
NiftyDrum

Official Documentation

Ronna Technologies

Copyright © 2025 Ronna Technologies

Table of contents

31. About NiftyDrum

31.1 Description

31.2 How It Works

41.3 Specifications

52. The Board

52.1 Description

62.2 Connecting Sensors

62.3 MIDI Outputs

72.4 USB-C Port

72.5 Raspberry-Pi hat form factor

72.6 App Features

83. The App

83.1 Configure NiftyDrum

103.2 How to Install the App

113.3 Piezo Trigger Configuration

123.4 Hi-Hat Pedal Configuration

133.5 Firmware Upgrade

164. Serial Protocol

164.1 Overview

164.2 Command Syntax

194.3 Hi-Hat Controller Parameters

205. Arduino

Table of contents

- 2/20 - Copyright © 2025 Ronna Technologies

1. About NiftyDrum

1.1 Description

NiftyDrum is a trigger-to-MIDI conversion module that transforms piezo and FSR sensor inputs into

MIDI messages. Connect up to 9 piezo sensors and 1 FSR (Force Sensing Resistor) to the dedicated

terminal blocks, then receive MIDI data via USB-C connection.

1.2 How It Works

NiftyDrum delivers high-level MIDI performance in 4 easy steps:

Connect sensors: Attach up to 9 piezo sensors and 1 FSR to the terminal blocks

Plug in: Connect to your DAW, Raspberry Pi, or drum module via USB

Configure: Use the web-based GUI to adjust trigger parameters, MIDI mapping, and velocity curves

Play: Notes are transmitted instantly with imperceptible latency

•

•

•

•

1. About NiftyDrum

- 3/20 - Copyright © 2025 Ronna Technologies

1.3 Specifications

1.3.1 Hardware

Piezo inputs: 9 channels

FSR input: 1 channel (hi-hat controller)

Connector type: Terminal blocks

USB interface: Type-C

Dimensions: 65 × 56.5 mm

1.3.2 Performance

Latency: <2.5 ms

Sample rate: >10 kHz

Velocity resolution: 127 levels (full MIDI range)

1.3.3 Software

Platform support: Windows, macOS, Linux

User interface: Web-based application

Firmware updates: Via USB

MIDI output: Note messages and Control Changes (CC)

•

•

•

•

•

•

•

•

•

•

•

•

1.3 Specifications

- 4/20 - Copyright © 2025 Ronna Technologies

2. The Board

2.1 Description

The NiftyDrum board is shown in the following image.

This board features the following interfaces:

Terminal blocks for sensor inputs

USB Type-C port for laptop or PC connectivity

9 potentiometers for sensitivity adjustment

2 LEDs

Reset button

Raspberry Pi-compatible GPIO header

4 mounting holes

•

•

•

•

•

•

•

2. The Board

- 5/20 - Copyright © 2025 Ronna Technologies

2.2 Connecting Sensors

The board provides 9 piezo inputs, supporting up to 9 single-zone pads, as well as 1 FSR input.

2.2.1 Hi-Hat Sensors

On the left side of the board, two dedicated terminal blocks are reserved for hi-hat sensors:

Top terminal block: Connects to an FSR (Force Sensing Resistor) sensor for hi-hat controller input

Bottom terminal block: Connects to a piezo sensor for hi-hat cymbal trigger

2.2.2 Standard Pads and Cymbals

The remaining eight terminal blocks, located at the bottom of the board, are for connecting regular

pads and cymbals. While the board labels indicate the default firmware assignments, these inputs are

fully customizable.

2.2.3 Important Notes

For all terminal blocks, the ground pin is positioned on the left-hand side

Nine onboard potentiometers enable hardware-level sensitivity adjustments for maximum flexibility

If unsure about sensitivity settings, leave potentiometers at their midpoint for balanced performance

2.3 MIDI Outputs

The board offers two methods for transmitting MIDI notes and Control Changes:

USB-C port: Outputs USB MIDI messages

GPIO UART pins: Raspberry Pi GPIO-compatible interface

•

•

•

•

•

•

•

2.2 Connecting Sensors

- 6/20 - Copyright © 2025 Ronna Technologies

2.4 USB-C Port

Using NiftyDrum as a USB device is the recommended method for receiving MIDI messages. This

configuration enables:

Integration with DAW software for high-quality sound output from your laptop

Control and configuration via the official app

2.5 Raspberry-Pi hat form factor

The board is designed with a Raspberry Pi 4 HAT form factor, ensuring seamless integration.

2.6 App Features

The official app provides comprehensive control over your NiftyDrum board:

Customize MIDI note assignments for each trigger

Design custom velocity curves per trigger

Adjust advanced parameters including gain, threshold, scan time, mask time, and decay

Update board firmware to the latest version

•

•

•

•

•

•

2.4 USB-C Port

- 7/20 - Copyright © 2025 Ronna Technologies

3. The App

3.1 Configure NiftyDrum

This app is designed only for configuration purposes. While running, it continuously transfers

data between your PC and the board. For optimal performance, close the app before playing.

NiftyDrum is fully configurable, allowing you to adjust parameters like scan time, mask time, decay,

threshold, etc. To simplify customization, a dedicated desktop application is available, compatible

with Windows, Linux, and macOS.

Below are all the different commands the app can send to the board.

3.1.1 General Board Commands

Warning

Command Description

Reset Restart the board in bootloader mode

Serial number Retrieve the board’s unique serial number

Version Retrieve the current firmware version

Save current parameters Persist current settings to the board

Load parameters Load previously saved board parameters

Factory reset Reset all parameters to factory defaults

3. The App

- 8/20 - Copyright © 2025 Ronna Technologies

3.1.2 Trigger Parameters (Per Trigger, Including Hi-Hat Cymbal)

3.1.3 Hi-Hat Pedal Parameters

3.1.4 How the App Works

The app simplifies customization by organizing everything logically: instruments are selected via a

drop-down, while MIDI notes and velocity curves are managed separately from trigger settings for a

cleaner, more efficient setup.

Parameter Description

Set/get velocity curve Adjust or retrieve the velocity response curve

Set/get threshold Configure the trigger activation threshold

Scan time Set/get the trigger scan time

Mask time Set or adjust the trigger mask time

Decay time Adjust the decay time of the trigger

Gain Adjust the gain level of the trigger

MIDI Note Assign the MIDI note for the trigger

Parameter Description

Update interval Set the hi-hat pedal update frequency

Noise threshold Ignore pedal changes below this value

Pedal offset Determine if the hi-hat is fully closed

Velocity threshold Set the velocity threshold for foot chick

3.1.2 Trigger Parameters (Per Trigger, Including Hi-Hat Cymbal)

- 9/20 - Copyright © 2025 Ronna Technologies

3.2 How to Install the App

he app is available for Windows, macOS, and Linux and can be downloaded directly from the official

NiftyDrum.com website. Follow the OS-specific instructions provided on the site.

3.2.1 Windows

On Windows, the app is distributed as a .zip file, so no installation is required, simply extract and run

it. Note that, if that's not already done, you will have to install the Microsoft Visual C++ Redistributable

package.

3.2.2 Linux

For Linux, the app is packaged as a .deb file. You can install it using your preferred package manager

or by running the following command in a terminal:

3.2.3 MacOS

The MacOS version of the app is provided as a .zip file. Just extract it and run the application. If

you're using an Apple Silicon Mac, you may be prompted to install Rosetta the first time you launch the

app.

Ubuntu 22.04 Ubuntu 24.04 debian

sudo apt install --reinstall ./NiftyDrum-1.0.0-Ubuntu-22.04.deb

sudo apt install --reinstall ./NiftyDrum-1.0.0-Ubuntu-24.04.deb

sudo apt install --reinstall ./NiftyDrum-1.0.0-Linux.deb

3.2 How to Install the App

- 10/20 - Copyright © 2025 Ronna Technologies

https://niftydrum.com/#software
https://aka.ms/vs/17/release/vc_redist.x64.exe
https://aka.ms/vs/17/release/vc_redist.x64.exe

3.3 Piezo Trigger Configuration

Customize each piezo trigger by selecting your desired instrument from the dropdown menu. The

screenshot below illustrates the process for configuring the snare drum.

On the left side, you can assign the MIDI note for the pad, such as note 38 for the snare. Below the note

input, you’ll find the velocity curve editor, which uses Bézier controls for precise adjustments. You can

drag and drop the endpoints and the two middle control points to shape the curve according to your

needs. The horizontal axis reflects the raw MIDI velocity detected by the sensor, while the vertical axis

shows the velocity value transmitted over USB. This setup lets you fine-tune the responsiveness and

dynamics of your triggers.

Moving from left to right, you can adjust the trigger gain within a range of 0.1 to 5. This allows you to

boost the input sensitivity of the trigger, enhancing the volume of ghost notes when the velocity curve

alone isn’t sufficient. It’s important to note that the gain is applied after a strike has been detected, so

it doesn’t impact the threshold setting.

Next is the threshold setting, which sets the minimum signal level the piezo must exceed for a hit to

register. This ensures only intentional strikes are detected, effectively filtering out unwanted noise and

preventing false triggers.

3.3 Piezo Trigger Configuration

- 11/20 - Copyright © 2025 Ronna Technologies

3.4 Hi-Hat Pedal Configuration

The last item in the dropdown menu is the hi-hat pedal configuration. Unlike other inputs, it does not

include standard parameters like scan time or mask time.

The hi-hat implementation is currently experimental. The app settings may evolve in future

updates.

3.4.1 Parameters

The hi-hat pedal configuration includes four key parameters:

Hi-Hat Implementation Status

Parameter Description

Update interval Sets the frequency at which the hi-hat pedal updates.

Noise threshold Ignores pedal changes below this value to filter out noise.

Pedal offset Determines whether the hi-hat is fully closed.

Velocity threshold (Trig) Sets the sensitivity threshold for triggering a foot chick note.

3.4 Hi-Hat Pedal Configuration

- 12/20 - Copyright © 2025 Ronna Technologies

3.4.2 CC Message Behavior

The Update interval defines the minimum delay (in microseconds) between two CC messages,

typically set to 10ms.

The Noise threshold sets the minimum change in value required to send a CC message.

3.4.3 Foot Chick Note Trigger

The Pedal offset and Velocity threshold (Trig) determine whether a foot chick note is sent, with the

latter acting as a sensitivity threshold.

3.5 Firmware Upgrade

The app also supports firmware upgrades for your board.

•

•

3.4.2 CC Message Behavior

- 13/20 - Copyright © 2025 Ronna Technologies

Here is how to upgrade the firmware:

From the app's main screen, click the "gear" icon to access the Advanced Settings screen.

Select a firmware file (if downloaded as a .zip , unzip it first).

Ensure the file has a .bin extension and is an officially supported firmware.

Click the Upload button and wait for the process to complete.

•

•

•

•

3.5 Firmware Upgrade

- 14/20 - Copyright © 2025 Ronna Technologies

Do not unplug the board during the firmware upload.

If the firmware upload fails or the board is accidentally unplugged. Download tkg-flash . Double-

press the reset button on the board. Upload the firmware via terminal:

Once the upload is complete, the board will restart automatically, and the app will reconnect to it.

Warning

Troubleshooting

Unix Windows

./tkg-flash NiftyDrum.bin

./tkg-flash.exe NiftyDrum.bin

3.5 Firmware Upgrade

- 15/20 - Copyright © 2025 Ronna Technologies

https://github.com/TheKikGen/stm32-tkg-hid-bootloader/tree/master/cli/binaries_dist
https://github.com/TheKikGen/stm32-tkg-hid-bootloader/tree/master/cli/binaries_dist

4. Serial Protocol

4.1 Overview

The NiftyDrum board establishes a virtual serial port over USB when connected to a computer. It also

features a USART interface on the Raspberry Pi-compatible GPIO port.

The USART pins are 3.3V only. Exceeding this voltage may damage the board.

4.2 Command Syntax

All commands begin with a forward slash (/). Commands that require arguments follow the format:

4.2.1 Special Commands

Special commands do not require parameters. They either modify the board's behavior or provide

specific information.

USART Voltage Limit

/command arg1 arg2 arg3

Command Description

/reset Reboots the board in bootloader mode.

/factory_reset Resets all settings to factory defaults.

/sn Returns the board's serial number.

/version Returns the current firmware version.

4. Serial Protocol

- 16/20 - Copyright © 2025 Ronna Technologies

4.2.2 Parameters Commands

The board uses on-board EEPROM to persist parameters. The serial protocol provides the following

commands to save and load these parameters.

4.2.3 Pad Parameters

Each pad supports six configurable parameters:

Threshold

Gain

Scan time

Mask time

Decay

MIDI note

The examples below use snare . Replace it with hihat , kick , crash1 , tom1 , tom3 , ride ,

tom2 , or crash2 as needed.

Command Description

/load params all Loads all parameters from EEPROM.

/save params all Saves all current parameters to EEPROM.

•

•

•

•

•

•

Instrument Placeholder

4.2.2 Parameters Commands

- 17/20 - Copyright © 2025 Ronna Technologies

Getters

Use the following commands to retrieve pad parameter values:

Setters

Use the following commands to set pad parameter values:

Command Description Example Reply

/get snare threshold Gets the trigger threshold. 15

/get snare gain Gets the sensor gain. 1.5

/get snare scan Gets the scan time (µs). 3000 (3ms)

/get snare mask Gets the mask time (µs). 20000 (20ms)

/get snare decay Gets the decay time (µs). 60000 (60ms)

/get snare note Gets the MIDI note assigned to the pad. 36

Command Description Example Usage

/set snare threshold Sets the trigger threshold. /set snare threshold 15

/set snare gain Sets the sensor gain. /set snare gain 1.5

/set snare scan Sets the scan time (µs). /set snare scan 3000

/set snare mask Sets the mask time (µs). /set snare mask 20000

/set snare decay Sets the decay time (µs). /set snare decay 60000

/set snare note Sets the MIDI note for the pad. /set snare note 36

4.2.3 Pad Parameters

- 18/20 - Copyright © 2025 Ronna Technologies

The board does not validate input values. Incorrect values may cause unexpected behavior.

4.3 Hi-Hat Controller Parameters

The hi-hat controller behaves differently.

Value Validation

4.3 Hi-Hat Controller Parameters

- 19/20 - Copyright © 2025 Ronna Technologies

5. Arduino

5. Arduino

- 20/20 - Copyright © 2025 Ronna Technologies

	NiftyDrum
	1. About NiftyDrum
	1.1 Description
	1.2 How It Works
	1.3 Specifications
	1.3.1 Hardware
	1.3.2 Performance
	1.3.3 Software

	2. The Board
	2.1 Description
	2.2 Connecting Sensors
	2.2.1 Hi-Hat Sensors
	2.2.2 Standard Pads and Cymbals
	2.2.3 Important Notes

	2.3 MIDI Outputs
	2.4 USB-C Port
	2.5 Raspberry-Pi hat form factor
	2.6 App Features

	3. The App
	3.1 Configure NiftyDrum
	3.1.1 General Board Commands
	3.1.2 Trigger Parameters (Per Trigger, Including Hi-Hat Cymbal)
	3.1.3 Hi-Hat Pedal Parameters
	3.1.4 How the App Works

	3.2 How to Install the App
	3.2.1 Windows
	3.2.2 Linux
	3.2.3 MacOS

	3.3 Piezo Trigger Configuration
	3.4 Hi-Hat Pedal Configuration
	3.4.1 Parameters
	3.4.2 CC Message Behavior
	3.4.3 Foot Chick Note Trigger

	3.5 Firmware Upgrade

	4. Serial Protocol
	4.1 Overview
	4.2 Command Syntax
	4.2.1 Special Commands
	4.2.2 Parameters Commands
	4.2.3 Pad Parameters
	Getters
	Setters

	4.3 Hi-Hat Controller Parameters

	5. Arduino

